O papel das relações entre a função solução e sua variação no esquema de solução de sistemas de equações diferenciais

Autores

  • María Trigueros Gaisman Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.23925/1983-3156.2023v25i2p439-458

Palavras-chave:

Sistemas de equações diferenciais, Cálculo, Teoria APOE, Sistemas dinâmicos, Funções paramétricas, Esquema

Resumo

Este artigo contribui para o conhecimento sobre o aprendizado de sistemas de equações diferenciais do ponto de vista dos sistemas dinâmicos. Ele analisa a evolução do esquema de sistemas dinâmicos de duas variáveis em estudantes universitários após a conclusão de um curso sobre sistemas dinâmicos elaborado com a teoria Action Process Object Schema (APOE) como base para a elaboração das atividades usadas ao longo do curso. Em particular, este estudo se concentra na maneira como os alunos dão significado às estratégias usadas para representar e interpretar sistemas de equações diferenciais e as relações que estabelecem entre as estruturas que compõem o Esquema de Sistemas de Equações e, em particular, as relações entre a função e sua derivada por meio das diferentes representações usadas para estudá-las. Este trabalho também contribui para enriquecer a noção de Esquema e de interação entre Esquemas na teoria APOE, bem como para a análise das relações entre os diferentes conceitos envolvidos e entre as várias representações das soluções que desempenham um papel no contexto dos sistemas de equações diferenciais e, principalmente, na compreensão das funções paramétricas.

Metrics

Carregando Métricas ...

Biografia do Autor

María Trigueros Gaisman, Benemérita Universidad Autónoma de Puebla

PhD em Educação pela Universidade Complutense de Madri.

Referências

Arnon, I, Cottril, J, Dubinsky, E. Roa Fuentes, S , Trigueros, M, Weller, K (2014). APOS Theory: Framework for research and curriculum development in Mathematics Education, Springer.

Arslan, S. (2010). Do students really understand what an ordinary differential equation is? International Journal of Mathematical Education in Science and Technology, 41(7), 873-888. doi.org/ 10.1080/0020739X.2010.486448

Baker, B., L. Cooley and M. Trigueros. (2000). The Schema Triad: A Calculus Example. Journal for Research in Mathematics Education. Vol. 31, No. 5, 557-578.

Blanchard, P., Devaney, R. L. & Hall, G. R.& Hall G. R. (2011). Differential Equations, 4th Edition. Brooks and Cole.

Blumenfeld, H. L. (2006). Student’s reinvention of straight-line solutions to systems of linear ordinary differential equations. San Diego State University. Retrieved from http://faculty.sdmiramar.edu/faculty/sdccd/hblumenf/thesis.pdf

Chaachoua, H. & Saglam, A. (2006). Modelling by differential equations. Teaching mathematics and its applications, 25, 15–22. Oxford University Press.

Dana-Picard T, Kidron I (2008) Exploring the phase space of a system of differential equations: different mathematical registers. Int J Sci Math Educ 6(4):695–717

Fuentealba C., Trigueros, M., Sánchez-Matamoros, G. & Badillo, E. (2022). Los mecanismos de asimilación y acomodación en la tematización de un Esquema de derivada. en Gloria Sánchez Matamoros y María Trigueros (Eds.). El aprendizaje y la enseñanza de las matemáticas en la universidad.. Avances De Investigación En Educación Matemática, (21), 23–44. https://doi.org/10.35763/aiem21.4241

Kwon, O.N. (2020). Differential Equations Teaching and Learning. In: Lerman, S. (eds) Encyclopedia of Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-15789-0_100023

Lopes, A. (2021). Modelagem Matemática e Equações Diferenciais: um mapeamento das pesquisas em Educação Matemática. REnCiMa: Revista de Ensino de Ciências e Matemática, 12(4), 16–31. https://doi.org/10.26843/rencima.v12n4a16

Martin Bracke, J. & Lantau, M. (2017). Mathematical modelling of dynamical systems and implementation at school. CERME10, Dublin, Ireland. hal-01933489

Martínez Planell, R. & Trigueros, M. (2019) “Using cycles of research in APOS: The case of functions of two variables”. The Journal of Mathematical Behavior, Vol. 55, 100687. ISNN: 0732-3123.

Martínez-Planell, R., & Trigueros, M. (2013). “Graphs of functions of two variables: results from the design of instruction”. International Journal of Mathematical Education in Science and Technology, vol. 44, No. 5, pp. 663-672. http://dx.doi.org/10.1080/0020739X.2013.780214

Perez Campos, A. & Da Silva Reis, F. (2022). Contributions of Mathematical Modelling for Learning Differential Equations in the Remote Teaching Context. Acta Sci. (Canoas), 24(3), 184-215. ISSN: 2178-7727

Piaget J. & García, R. (1982). Psicogénesis e Historia de la Ciencia, SigloXXI ed.

Rasmussen, C. L. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. The Journal of Mathematical Behavior, 20(1), 55-87. https://doi.org/10.1016/S0732-3123(01)00062-1

Rowland, D. R. (2006). Student difficulties with units in differential equations in modelling contexts. International Journal of Mathematical Education in Science and Technology, 37(5), 553-558. https://doi.org/10.1080/00207390600597690

Trigueros, M., & Martínez Planell, R. (2010). “Geometrical representations in the learning of two-variable functions” in Educational Studies in Mathematics, Vol. 73, Issue 1, pp. 3-19. Published on line: 24 June 2009. http://www.springerlink.com/openuri.asp?genre=article&id=doi:10.1007/s10649-009-9201-5.

Trigueros M. (2021). Un acercamiento a la Física a través de un modelo matemático de variación. Revista UNO 93, 38-49 ISSN:1133-9853

Trigueros, M. (2014). Vínculo entre la modelación y el uso de representaciones en la comprensión de los conceptos de ecuación diferencial de primer orden y de solución. Educación Matemática, 25 años (número especial), 207–226.

Trigueros, M. (2004). Understanding the meaning and representation of straight line solutions of systems of differential equations. In D. McDougall & J. Ross (Eds.), Proceedings of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 127-134). Ontario, Canada.

Trigueros, M. (2000). Students' conceptions of solution curves and equilibrium in systems of differential equations. In Fernandez, M. L. (Ed.), Proceedings of the 22nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 93-97). Columbus, OH: ERIC.

Vajravelu, K. (2018). Innovative strategies for learning and teaching of large differential equations classes. International Electronic Journal of Mathematics Education, 13(2), https://doi.org/10.12973/iejme/2699

Zandieh, M. & McDonald, M. (1999). Student understanding of equilibrium solution in differential equations. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 253-258). Columbus, OH: ERIC.

Publicado

2023-08-20

Como Citar

GAISMAN, M. T. O papel das relações entre a função solução e sua variação no esquema de solução de sistemas de equações diferenciais. Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática, São Paulo, v. 25, n. 2, p. 439–458, 2023. DOI: 10.23925/1983-3156.2023v25i2p439-458. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/62216. Acesso em: 27 dez. 2024.

Edição

Seção

NÚMERO ESPECIAL - COMEMORAÇÃO DOS 25 ANOS DA REVISTA EDUCAÇÃO MATEMÁTICA PESQU