The role of the relationships between the solution function and its variation in the solution scheme of systems of differential equations

Authors

  • María Trigueros Gaisman Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.23925/1983-3156.2023v25i2p439-458

Keywords:

Systems of differential equations, Calculus, APOE theory, Dynamical systems, Parametric functions, Scheme

Abstract

This article contributes to the knowledge about the learning of systems of differential equations from the point of view of dynamical systems. It analyzes the evolution of the Schema of dynamic systems of two variables in university students, after finishing a course of dynamic systems designed with the Action Process Object Object Schema (APOE) theory as a support for the design of activities used throughout the course. In particular, this study focuses on how students give meaning to the strategies used to represent and interpret systems of differential equations and the relationships they establish between the structures that make up the Systems of Equations Schema and in particular the relationships between the function and its derivative through the different representations used to study them. This work also contributes to enrich the notion of Schema and interaction between Schemas of the APOE theory, as well as to the analysis of the relationships between the different concepts involved in and between the different representations of the solutions that play a role in the context of systems of differential equations and, importantly, in the understanding of parametric functions.

Metrics

Metrics Loading ...

Author Biography

María Trigueros Gaisman, Benemérita Universidad Autónoma de Puebla

PHD in Education from the Complutense University of Madrid.

References

Arnon, I, Cottril, J, Dubinsky, E. Roa Fuentes, S , Trigueros, M, Weller, K (2014). APOS Theory: Framework for research and curriculum development in Mathematics Education, Springer.

Arslan, S. (2010). Do students really understand what an ordinary differential equation is? International Journal of Mathematical Education in Science and Technology, 41(7), 873-888. doi.org/ 10.1080/0020739X.2010.486448

Baker, B., L. Cooley and M. Trigueros. (2000). The Schema Triad: A Calculus Example. Journal for Research in Mathematics Education. Vol. 31, No. 5, 557-578.

Blanchard, P., Devaney, R. L. & Hall, G. R.& Hall G. R. (2011). Differential Equations, 4th Edition. Brooks and Cole.

Blumenfeld, H. L. (2006). Student’s reinvention of straight-line solutions to systems of linear ordinary differential equations. San Diego State University. Retrieved from http://faculty.sdmiramar.edu/faculty/sdccd/hblumenf/thesis.pdf

Chaachoua, H. & Saglam, A. (2006). Modelling by differential equations. Teaching mathematics and its applications, 25, 15–22. Oxford University Press.

Dana-Picard T, Kidron I (2008) Exploring the phase space of a system of differential equations: different mathematical registers. Int J Sci Math Educ 6(4):695–717

Fuentealba C., Trigueros, M., Sánchez-Matamoros, G. & Badillo, E. (2022). Los mecanismos de asimilación y acomodación en la tematización de un Esquema de derivada. en Gloria Sánchez Matamoros y María Trigueros (Eds.). El aprendizaje y la enseñanza de las matemáticas en la universidad.. Avances De Investigación En Educación Matemática, (21), 23–44. https://doi.org/10.35763/aiem21.4241

Kwon, O.N. (2020). Differential Equations Teaching and Learning. In: Lerman, S. (eds) Encyclopedia of Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-15789-0_100023

Lopes, A. (2021). Modelagem Matemática e Equações Diferenciais: um mapeamento das pesquisas em Educação Matemática. REnCiMa: Revista de Ensino de Ciências e Matemática, 12(4), 16–31. https://doi.org/10.26843/rencima.v12n4a16

Martin Bracke, J. & Lantau, M. (2017). Mathematical modelling of dynamical systems and implementation at school. CERME10, Dublin, Ireland. hal-01933489

Martínez Planell, R. & Trigueros, M. (2019) “Using cycles of research in APOS: The case of functions of two variables”. The Journal of Mathematical Behavior, Vol. 55, 100687. ISNN: 0732-3123.

Martínez-Planell, R., & Trigueros, M. (2013). “Graphs of functions of two variables: results from the design of instruction”. International Journal of Mathematical Education in Science and Technology, vol. 44, No. 5, pp. 663-672. http://dx.doi.org/10.1080/0020739X.2013.780214

Perez Campos, A. & Da Silva Reis, F. (2022). Contributions of Mathematical Modelling for Learning Differential Equations in the Remote Teaching Context. Acta Sci. (Canoas), 24(3), 184-215. ISSN: 2178-7727

Piaget J. & García, R. (1982). Psicogénesis e Historia de la Ciencia, SigloXXI ed.

Rasmussen, C. L. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. The Journal of Mathematical Behavior, 20(1), 55-87. https://doi.org/10.1016/S0732-3123(01)00062-1

Rowland, D. R. (2006). Student difficulties with units in differential equations in modelling contexts. International Journal of Mathematical Education in Science and Technology, 37(5), 553-558. https://doi.org/10.1080/00207390600597690

Trigueros, M., & Martínez Planell, R. (2010). “Geometrical representations in the learning of two-variable functions” in Educational Studies in Mathematics, Vol. 73, Issue 1, pp. 3-19. Published on line: 24 June 2009. http://www.springerlink.com/openuri.asp?genre=article&id=doi:10.1007/s10649-009-9201-5.

Trigueros M. (2021). Un acercamiento a la Física a través de un modelo matemático de variación. Revista UNO 93, 38-49 ISSN:1133-9853

Trigueros, M. (2014). Vínculo entre la modelación y el uso de representaciones en la comprensión de los conceptos de ecuación diferencial de primer orden y de solución. Educación Matemática, 25 años (número especial), 207–226.

Trigueros, M. (2004). Understanding the meaning and representation of straight line solutions of systems of differential equations. In D. McDougall & J. Ross (Eds.), Proceedings of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 127-134). Ontario, Canada.

Trigueros, M. (2000). Students' conceptions of solution curves and equilibrium in systems of differential equations. In Fernandez, M. L. (Ed.), Proceedings of the 22nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 93-97). Columbus, OH: ERIC.

Vajravelu, K. (2018). Innovative strategies for learning and teaching of large differential equations classes. International Electronic Journal of Mathematics Education, 13(2), https://doi.org/10.12973/iejme/2699

Zandieh, M. & McDonald, M. (1999). Student understanding of equilibrium solution in differential equations. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 253-258). Columbus, OH: ERIC.

Published

2023-08-20

How to Cite

GAISMAN, M. T. The role of the relationships between the solution function and its variation in the solution scheme of systems of differential equations. Educação Matemática Pesquisa, São Paulo, v. 25, n. 2, p. 439–458, 2023. DOI: 10.23925/1983-3156.2023v25i2p439-458. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/62216. Acesso em: 24 nov. 2024.

Issue

Section

SPECIAL ISSUE - CELEBRATION OF THE 25TH ANNIVERSARY OF THE JOURNAL EDUCAÇÃO MAT