Unveiling paths for the professional learning of the math teacher of the early years of elementary School

analysis of the actions of a teacher´s educators.

Authors

DOI:

https://doi.org/10.23925/1983-3156.2022v24i1p418-455

Keywords:

Opportunities of Professional Learning, Continuous Formation, Algebraic Thinking, Math Teachers, Early Years of Elementary School

Abstract

This article aims to identify the professional learning opportunities for teachers made possible during a formation process, focusing on the analysis of the planning of formations and the actions of the teacher educator to develop the training. This study is qualitative and constructionist, within the theoretical perspective of interpretivism. We analyzed the documents of the formation process and an interview of stimulated memory with the teachers’ educator that complemented them. The results revealed that the participants glimpsed possibilities of developing Algebraic Thinking with the elementary students, participated in mathematical and didactic discussions about the property of the opposite element, the neutral element (addition and multiplication) and the meaning of equivalence of the equal sign, and reflected on the knowledge of the 5th-graders of elementary school, related to the development of Algebraic Thinking. First, the teacher educator’s choices made it possible to articulate the mathematical and didactic dimensions and bring Academic Mathematics closer to School Mathematics linked to Algebraic Thinking. Second, it favored discursive interactions based on the argumentation and justification and moments of individual and collective work, aiming to expand knowledge.

Metrics

Metrics Loading ...

Author Biographies

Alessandro Jacques Ribeiro, Universidade de Lisboa

PhD in Mathematics Education at Pontifical Catholic University of São Paulo (2007). He developed two Post PhD stages: the first one at Rutgers, The State University of New Jersey, United States (2015) and the second at the Institute of Education of the University of Lisbon, Portugal (2017). Nowadays he is Professor Auxliar at the Institute of Education at UNiversity of Lisbon. His academic experience in Mathematics Education is mainly in the following subjects: Algebraic Education and Teacher Education. He worked as a teacher in Basic Education, in public and private schools in the State of Sao Paulo, for 10 years. He participated, as trainer, in continuing education programs for Mathematics teachers financed by SEE / SP. He was President of the Brazilian Mathematics Education Society (SBEM) from 07/2013 to 07/2016. It was fellow research productivity, level 2, CNPq, from 2020-2021.

Marcia Aguiar, Universidade Federal do ABC

PhD in Education at University of São Paulo (2014). Nowadays she is Professor at the Center for Mathematics, Computing and Cognition (CMCC), at Federal University of ABC (UFABC). Her academic experience in Mathematics Education is mainly in the following subjects: Algebraic Education and Teacher Education. She worked as a teacher in Basic Education, in the State of Sao Paulo, for 8 years.

References

Adler, J., & Ronda, E. (2014). An analytic framework for describing teachers’ mathematics discourse in instruction. In C. Nichol, P. Liljedahl, S. Oesterle, & D. Allan (Eds.), Proceedings of the of the 38th Conference of the International Group for the Psychology in Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (v. 2, pp. 9-16). PME.

Ball, D. L., Ben-Peretz, M., & Cohen, R. B. (2014). Records of practice and the development of collective professional knowledge. British Journal of Educational Studies, 62(3), 317-335.

Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners: towards a practice-based theory of professional education. In G. Sykes, & L. Darling-Hammond (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 3-32). Jossey-Bass.

Ball, D. L, Thames, M. & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, 59(5), 389-407.

Blanton, M., & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412-446.

Brasil. Ministério da Educação. (2017). Base Nacional Comum Curricular: Educação Infantil e Ensino Fundamental. Disponível em: http://basenacionalcomum.mec.gov.br/images/BNCC_20dez_site.pdf. Acesso em: 22 de abril de 2018.

Canavarro, A. P. (2007). O Pensamento Algébrico na aprendizagem da Matemática nos primeiros anos. Quadrante, 16(2), 81-118.

Canavarro, A. P. (2011). Ensino exploratório da Matemática: Práticas e desafios. Educação e Matemática, 115, 11-17.

Creswell, J. W. (2010). Projeto de pesquisa: métodos qualitativo, quantitativo e misto (Magda Lopes, Trad.). Artmed.

Estebán, M. P. S. (2010). Pesquisa qualitativa em educação: fundamentos e tradições (Miguel Cabrera, Trad., pp. 47-75). AMGH.

Falcão, D., & Gilbert, J. (2005). Método da lembrança estimulada: uma ferramenta de investigação sobre aprendizagem em museus de ciências. História, Ciências, Saúde, 12 (suplemento), 93-115.

Fanizzi, S. (2020). Formação continuada do professor pedagogo em Matemática: reflexões a partir da abordagem de Stephen Ball. Educ. Matem. Pesq., 22(1), 120-139.

Ferreira, M. C. F., Ribeiro, M., & Ribeiro, A. J. (2017). Conhecimento matemático para ensinar álgebra nos anos iniciais do Ensino Fundamental. Zetetiké, 25(3), 496-514.

Ferreira, M. C. N. (2017). Álgebra nos Anos Iniciais do Ensino Fundamental: uma análise do conhecimento matemático acerca do Pensamento Algébrico. (Dissertação de Mestrado. Universidade Federal do ABC).

Ferreira, M. C. N., Ribeiro, A. J., & Ponte, J. P. da. (2021). Prática profissional de professores dos anos iniciais e o Pensamento Algébrico: contribuições a partir de uma formação continuada. Educ. Matem. Pesq., 23(1), 171-200.

Fiorentini, D., Passos, C. L. B., & Lima, R. C. R. de L. (Orgs.). (2016). Mapeamento da pesquisa acadêmica brasileira sobre o professor que ensina matemática: período 2001 – 2012. FE/UNICAMP.

Gatti, B. A., & Barretto, E. S. de S., André, M. E. D. A. de, & Almeida, P. C. A. de. (2019). Professores do Brasil: novos cenários de formação. UNESCO.

Gatti, B. A., & Nunes M. M. R. (2008). Formação de professores para o Ensino Fundamental: instituições formadoras e seus currículos (Relatório final: Pedagogia). Fundação Carlos Chagas.

Goldsmith, L. T., Doerr, H. M., & Lewis, C. (2014). Mathematics teachers’ learning: A conceptual framework and synthesis of research. Journal of Mathematics Teacher Education, 17, 5-36.

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151.

Kilpatrick, J. A. (2019). Double discontinuity and a triple approach: Felix Klein’s perspective on Mathematics Teacher Education. In H. G. Weigand, W. McCallum, M. Menghini, M. Neubrand, & G. Schubring (Eds.), The Legacy of Felix Klein (pp. 215-226). Springer.

Mata-Pereira, J., & Ponte, J. P. (2017). Enhancing students’ mathematical reasoning in the classroom: Teacher actions facilitating generalization and justification. Educational Studies in Mathematics, 96(2), 169-186.

Moriconi, G. M., Davis, C. L. F., Tartuce, G. L. B. P., Nunes, M. N. R., Esposito, Y. L., Simielli, L. E. R., & Teles, N. C. G. (2017). Formação continuada de professores: contribuições da literatura baseada em evidências (Textos FCC: Relatórios técnicos, 52). Fundação Carlos Chagas.

Nacarato, A. M., Mengali, B. da S., & Passos, C. L. B. (2009). A Matemática nos anos iniciais do Ensino Fundamental: tecendo fios do ensinar e do aprender. Autêntica.

Nemirovsky, R., Dimatti, C. Ribeiro, B., & Lara-Meloy, T. (2005). Talking about teaching episodes. Journal Mathematics Teacher Education, 8, 363-392. https://doi.org/10.1007/s10857-005-3848-3

Oliveira, V. de, & Paulo, R. M. (2019). Entendendo e discutindo as possibilidades do ensino de Álgebra nos anos iniciais do Ensino Fundamental, Educ. Matem. Pesq., 21(3), 75-95, http://dx.doi.org/10.23925/1983-3156.2019vol21i3p75-95

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of Educational Research, 81(3), 376-407.

Ponte, J. P. da (1999). Didácticas específicas e construção do conhecimento profissional. In J. Tavares, A. Pereira, A. P. Pedro, & H. A. Sá (Eds.), Investigar e formar em educação: Actas do IV Congresso da SPCE (pp. 59-72). SPCE.

Ponte, J. P. da (2005). Gestão curricular em Matemática. In GTI (Ed.), O professor e o desenvolvimento curricular (pp. 11-34). APM.

Ponte, J. P. da (2012). Estudiando el conocimiento y el desarrollo profesional del profesorado de matemáticas. In N. Planas (Ed.), Teoría, crítica y práctica de la educación matemática (pp. 83-98). Graó.

Ponte, J. P. da, & Branco, N. (2013, outubro/dezembro). Pensamento Algébrico na formação inicial de professores. Educar em Revista, 50, 135-155.

Ponte, J. P. da, & Quaresma, M. (2016). Teachers’ professional practice conducting mathematical discussions. Educational Studies in Mathematics, 93(1), 51-66.

Ponte, J. P. da, & Serrazina L. (2004). As práticas dos professores de Matemática em Portugal. Educação e Matemática, 80, 8-12.

Ribeiro, A. J., & Ponte, J. P. da (2019). Professional learning opportunities in a practice-based teacher education programme about the concept of function. Acta Scientiae, 21(2), 49-74.

Ribeiro, A. J., & Ponte, J. P. da (2020). A theoretical model for organizing and understanding teacher learning opportunities to teach mathematics. Um modelo teórico para organizar e compreender as oportunidades de aprendizagem de professores para ensinar matemática. Zetetiké, 28, 01-20. DOI: 10.20396/zet.v28i0.8659072.

Schliemann, A. D., Carraher, D. W., & Brizuela, B. M. (2007). Bringing out the algebraic character of Arithmetic: From children's ideas to classroom practice. Lawrence Erlbaum Associates.

Silva, A. A. da, & Bianchini, B. L. (2020). Teses brasileiras relacionadas ao Pensamento Algébrico no período entre 2011 e 2018. Revista de Produção Discente em Educação Matemática, 9, 77-88.

Silver, E. A., Clark, L. M., Ghousseini, H. N., Charalambous, C. Y., & Sealy, J. T. (2007). Where is the mathematics? Examining teachers’ mathematical learning opportunities in practice-based professional learning tasks. Journal of Mathematics Teacher Education, 10, 261-277.

Smith, M. S. (2001). Practice-based professional development for teachers of mathematics. NCTM.

Stein, M., Engle, R., Smith, M., & Hughes, E. (2008). Orchestrating productive mathematical discussions: five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10, 313-340.

Stein, M., & Smith, M. (1998). Selecting and creating mathematical tasks: from research to practice. Mathematics Teaching in the Middle School, 3, 268-275.

Trevisan, A. L., Ribeiro, A. J., & Ponte, J. P. da (2019). Professional learning opportunities regarding the concept of function in a practice-based Teacher Education Program. International Electronic Journal of Mathematics Education,15(2), 1-14.

Trivilin L. R., & Ribeiro A. J. (2015). Conhecimento matemático para o ensino de diferentes significados do sinal de igualdade: um estudo desenvolvido com professores dos anos iniciais do ensino fundamental. Bolema, 29, 38-59.

Published

2022-04-22

How to Cite

SILVA, D. I. B.; RIBEIRO, A. J. .; AGUIAR, M. Unveiling paths for the professional learning of the math teacher of the early years of elementary School: analysis of the actions of a teacher´s educators. Educação Matemática Pesquisa, São Paulo, v. 24, n. 1, p. 418–455, 2022. DOI: 10.23925/1983-3156.2022v24i1p418-455. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/56759. Acesso em: 20 dec. 2024.