A study of students’ proving processes at the junior high- school level

Authors

DOI:

https://doi.org/10.23925/1983-3156.2022v24i1p698-721

Keywords:

Proof process, Types of proofs, Students' beliefs about proof in mathematics

Abstract

The aim of this research is to identify the foundations of students' belief in the validity of an assertion in their mathematical activity: what they recognize in practice as a proof and how they treat a refutation. We focused this study on the relationships between students' proving processes, the knowledge they have, the language they can use, and the role of the situational context. The types of proof processes evidenced by the students do not intrinsically characterize what we might call their "rationality", in that different levels of proof could be observed in their problem-solving activity. The meaning of the proof processes cannot be understood without a careful analysis of the students' conceptions of the mathematical concepts involved and their reading of the situation in which they act. The characteristics of the situation seem to determine the level of proof, while the students' image of mathematics also plays an important role, especially in dealing with refutations. It is observed that the passage from pragmatic to intellectual proofs requires a cognitive and linguistic foundation. Disregarding the complexity of this passage may be one of the main reasons for the failure of teaching mathematical proof, since this passage is often considered only at the logical level. In geometry in particular, this teaching occurs in a conceptual field that, for students has not yet constituted itself as a theory; since geometry was for them essentially restricted to the observation and construction of geometric objects with no need for proof. Thus, the teaching of proof is associated with what could be described as a cognitive break in student activity, related to the didactic break represented by the new requirement for mathematical proofs.

Metrics

Metrics Loading ...

Author Biographies

Nicolas Balacheff, Directeur de recherche CNRS émérite, Equipe MeTAH, Modèles et Technologies pour l'Apprentissage Humain Laboratoire d’informatique de Grenoble Univ. Grenoble Alpes, CNRS, Grenoble INP

Nicolas Balacheff,received the PhD degree in mathematics education. He is now senior scientist emeritus at the French National Centre for Scientific Research (CNRS). He was the cofounder of the journal Recherches en Didactique des Mathématiques in 1980. He served as the president of the International Group for the Psychology of Mathematics Education (1988–1990). In the recent years, he served as director of the computer-science and discrete mathematics Laboratory Leibniz (2000–2006). He was the founder and first scientific director of Kaleidoscope, European network of excellence on Technology Enhanced Learning (2004–2007)

Saddo Ag Almouloud, Pontifícia Universidade Católica de São Paulo

Doutorado em Mathematiques et Applications - Université de Rennes 1 em 1992 - frança. Assistente doutor - pontifícia universidade católica de São Paulo, e assistente doutor da fundação Santo André. Consultor ad hoc da fundação de amparo a pesquisa do estado de são Paulo, da capes, bolsista pesquisador de CNPQ, foi coordenador do programa de estudos pós-graduados em educação matemática da PUC-SP de 2007 à 2009 e de 01/08/2013 a 31/07/2017. Atualmente é vice coordenador do referido programa. Foi coordenador do curso de especialização em educação matemática da PUC-SP de 2006 a 2017. Publicou mais de 50 artigos em periódicos especializados e mais de 83 trabalhos em anais de eventos. Possui 5 capítulos de livros e 12 livros publicados. Possui 1 software e mais de 62 itens de produção técnica. Participou de vários eventos no exterior e mais de 112 no brasil. Orientou mais 77 dissertações de mestrado e teses de doutorado na área de educação matemática entre 1996 e 2016. Participou de mais de 200 bancas de defesa de dissertações e doutorados. Coordenou mais de 5 projetos de pesquisa. Atualmente coordena 2 projetos de pesquisa. Atua na área de educação, com ênfase em educação matemática. É avaliador do prêmio victor civita desde 2013. Em suas atividades profissionais interagiu com mais 70 colaboradores em coautorias de trabalhos científicos. Em seu currículo lattes os termos mais frequentes na contextualização da produção científica, tecnológica e artístico-cultural são: ensino-aprendizagem, geometria, educação matemática, matemática, demonstração, ensino básico, formação de professores, geometria dinâmica, TIC.

Méricles Tadeu Moretti, Universidade Federal de Santa Catarina

Doutor em Didática da Matemática

References

Balacheff N., 1982, Preuve et démonstration en mathématiques au Collège. Recherches en didactique des mathématiques, 33, pp.261‐304

Balacheff N., 1987a, Processus de preuve et situations de validation. Educational studies in mathematics, 8 pp.147‐176

Balacheff N., 1987b, Cognitive versus situationa1 analysis of problem-solving behaviors. For the learning of mathematics, 63, pp.10-12

Balacheff N., 1988, Une étude des processus de preuve en mathématiques chez des élèves de Collège. Thèse d'état, Université Joseph Fourier, Genoble1

Bourdieu P., 1980, Le sens pratique. Paris: Editions de Minuit

Fishbein E., 1982, Intuition and Proof. For the Learning of Mathematics, 32, pp. 9‐18 et 24

Galbraith P.L., 1979, Pupils proving. Shell Centre for Mathematical Education. The University of Nottingham

Hanna G., 1983, Rigorous Proofs in Mathematics Education. Curriculum series 48. The Ontario Institute for studies in Education

Lakatos I., 1976, Proofs and refutations. Cambridge University Press Piaget J., 1974, Recherches sur la contradiction, Vol.2. Paris : PUF Piaget J., 1975, L'équilibration des structures cognitives. Paris : PUF Popper K. R., 1979, Objective Knowledge. Oxford University Press

Sémadéni Z., 1984, Action proofs in primary mathematics teaching and in teacher training. For the learning of mathematics, 4 (1), pp.32‐34

Published

2022-04-22

How to Cite

BALACHEFF, N.; ALMOULOUD, S. A.; MORETTI, M. T. A study of students’ proving processes at the junior high- school level. Educação Matemática Pesquisa, São Paulo, v. 24, n. 1, p. 698–721, 2022. DOI: 10.23925/1983-3156.2022v24i1p698-721. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/57663. Acesso em: 20 dec. 2024.

Issue

Section

Tradução de artigo ou capítulo de livro