Theoretical constructs proposed by Tall for teaching derivatives
considerations on the development of an epistemological reference model
DOI:
https://doi.org/10.23925/1983-3156.2024v26i3p028-046Keywords:
Mathematics education, Teaching of calculus, Derivative concept, Epistemological reference modelAbstract
This article aims to contribute to the discussion in this issue, centered around the question “How to develop a Reference Epistemological Model (REM) for the teaching of Calculus?”, more specifically considering the teaching of derivatives. The arguments presented here advocate the inclusion of theoretical constructs, such as the ones developed by Tall for the teaching of derivatives, due to their potential to make cognitive and didactical contributions to students and teachers, respectively. The constructs that we refer to in this text were called generic organizer and cognitive root of local straightness by Tall. The authors of this text consider that adding these constructs to an REM may foster integration between theory and practice, which is important for the development of Mathematics teaching. We organized our reflections by linking ideas related to the integration between theory and practice, the conception of an REM, the teaching of derivatives and Tall’s theoretical constructs. We concluded the article emphasizing the importance of continuously observing the prevailing epistemology of the concept of derivatives for teaching, aiming to find contributions that support the emancipation of Didactics of Mathematics and promote effective Calculus teaching.
Metrics
References
Almeida, M. V. (2017). Material para o ensino do cálculo diferencial e integral: referências de Tall, Gueudet e Trouche. 261 f. Tese (Doutorado em Educação Matemática) - Doutorado Programa de Estudos Pós-Graduados em Educação Matemática, Pontifícia Universidade Católica de São Paulo, São Paulo, 2017.
Ausubel, D. P. (2003). Aquisição e Retenção de Conhecimentos: uma perspectiva cognitiva. Lisboa: Pararelo. Tradução de: Ligia Teopisito.
Cornu, B. (1991). Limits. In: Tall, D. (Ed). Advanced Mathematical Thinking (p. 153–166). Dordrecht/Boston/London: Kluwer Academic Publisher.
Dubinsky, E., Tall, D. (1991). Advanced Mathematical Thinking and the Computer. In: TALL, David (Ed.). Advanced Mathematical Thinking (p. 231–243). New York: Kluwer Academic Publishers.
Escarlate, A. C. (2008). Uma Investigação sobre a Aprendizagem de Integral. [Dissertação de mestrado em Ensino de Matemática – Universidade Federal do Rio de Janeiro]. https://pemat.im.ufrj.br/images/Documentos/Disserta%C3%A7%C3%B5es/2008/MSc_09_Allan_de_Castro_Escarlate.pdf
Ely, R. (2021). Teaching calculus with infinitesimals and differentials. ZDM – Mathematics Education, 53, 3, 591–604. https://doi.org/10.1007/s11858-020-01194-2
Gascón, J. (2014). Los modelos epistemológicos de referencia como instrumentos de emancipación de la didáctica y la historia de las matemáticas. Educación Matemática, 25, 99–123. https://www.redalyc.org/articulo.oa?id=40540854006
Jaworski, B. (2006). Theory and Practice in Mathematics Teaching Development: Critical Inquiry as a Mode of Learning in Teaching. J Math Teacher Educ. 9, 187–211. https://doi.org/10.1007/s10857-005-1223-z
Monaghan, J., Ely, R., Pinto, M. M. F., & Thomas, M. (2023). The Learning and Teaching of Calculus: Ideas, Insights and Activities (IMPACT: Interweaving Mathematics Pedagogy and Content for Teaching). (1st ed.). Routledge. https://doi.org/10.4324/9781003204800
Robinson, A. (1966). Nonstandard Analysis. Amsterdam: North-Holland.
Tall, D. O. (1980). Intuitive infinitesimals in the calculus. In: Abstracts of short communications, fourth international congress on mathematical education. http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1980c-intuitive-infls.pdf
Tall, D. O. (1981a). Intuitions of Infinity. Mathematics in School, 10 (3), 30–33.
Tall, D. O. (1981b). Infinitesimals constructed algebraically and interpreted geometrically. Mathematical Education for Teaching, 4 (1), 34–53.
Tall, D. (1982). The blancmange function, continuous everywhere but differentiable nowhere. Mathematical Gazette, 66, 11–22.
Tall, D. O. (1986). Building and Testing a Cognitive Approach to the Calculus Using Interactive Computer Graphics. [Tese de doutorado em Ensino de Matemática, – University of Warwick, Inglaterra]. https://wrap.warwick.ac.uk/2409/
Tall, D. (1989). Concept Images, Generic Organizers, Computers, and Curriculum Change. For the Learning of Mathematics, 9(3), 37–42. https://www.jstor.org/stable/40248161
Tall, D. O. (2000). Biological brain, mathematical mind & computational computers, em “ATCM Conference”. ATCM. http://www.davidtall.com/papers/biological-brain-math-mind.pdf
Tall, D. O. (2001). Natural and Formal infinities. Educational Studies in Mathematics, 48 (2), 199-238.
Tall, D. O. (2013). How humans learn to think mathematically: exploring three worlds of mathematics. New York: Cambridge University Press.
Tao, T. (2007). Ultrafilters, nonstandard analysis, and epsilon management. https://terrytao.wordpress.com/2007/06/25/ultrafilters-nonstandard-analysis-and-epsilon-management/
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).