La pensée géométrique spatiale et son articulation avec la visualisation et la manipulation d’objets en 3D

Auteurs

DOI :

https://doi.org/10.23925/1983-3156.2023v25i2p258-277

Mots-clés :

Pensée géométrique spatiale, visualisation, GeoGebra, Éducation mathématique

Résumé

Cet article vise à construire un cadre conceptuel qui aborde la pensée géométrique spatiale et les compétences de visualisation respectives requises à différents niveaux du processus de scolarité. Des études indiquent que la pensée géométrique spatiale est essentielle pour la pensée scientifique, car elle englobe un ensemble de processus cognitifs à travers lesquels l’être humain est capable de construire et de manipuler des représentations mentales d’objets dans l’espace et est une capacité dirigée vers la représentation, l’utilisation des objets et leurs relations dans les mondes 2D et 3D.  manipuler et expliquer les objets et leurs relations et devrait être développé dès les premières années de scolarité. Sur la base de ce contexte théorique, les résultats partiels d’une recherche sur les représentations de surfaces manipulables en trois dimensions (3D) et obtenues grâce à GeoGebra sont présentés. La théorie des enregistrements de représentation sémiotique de Duval a permis l’analyse des activités développées par les étudiants diplômés en enseignement des mathématiques, en observant et en manipulant ces représentations pour obtenir les enregistrements graphiques et algébriques respectifs. Le cadre conceptuel construit et présenté dans cet article a contribué à l’identification d’autres compétences requises dans cette étude pour le développement de la pensée géométrique spatiale.

Métriques

Chargements des métriques ...

Bibliographies de l'auteur

Zsolt Lavicza, Department of STEM Education, Linz School of Education, Johannes Kepler Universität Linz

 PhD (Faculty of Education Cambridge)

Celina A. A. Pereira Abar, Pontifícia Universidade Católica de São Paulo

PhD in Mathematics

Mathias Tejera, Department of STEM Education, Linz School of Education, Johannes Kepler Universität Linz

Master of Science, Educational Mathematics

Références

Cheng, Y.L., & Mix, K.S. (2014). Spatial Training Improves Children's Mathematics Ability. Journal of Cognition and Development, 15, 11 - 2.

Duval, R., & Moretti, T. (2012). Registros de representação semiótica e funcionamento cognitivo do pensamento Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Revemat: Revista Eletrônica de Educação Matemática, 7(2), pp. 266–297.

Duval, R. (2011). Registros de representações semióticas e funcionamento cognitivo da compreensão em matemática. In: MACHADO, S. D. de A. (Org.). Aprendizagem em Matemática: registros de representação semiótica. 8. ed. Campinas, SP: Papirus.

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61, 103-131.

http://dx.doi.org/10.1007/s10649-006-0400-z

Duval, R. (2000). Basic issues for research in Mathematics Education. In M. J. Hoines, & A. B. Fuglestad (Eds.), Proceedings of the 24th Conference fo the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 55-69). Hiroshima, Japan: PME.

Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century: An ICMI study. Dordrecht: Kluwer.

Gardner, H. (1983). Frames of Mind: A Theory of Multiple Intelligences. New York: Basic Books.

Gutiérrez, A. (1992). Exploring the links between van Hiele levels and 3-dimensional geometry. Structural Topology, 18, 31–48.

Gutiérrez, A. (1996). Vizualization in 3-dimensional geometry: In search of a framework. In L. Puig & A. Guttierez (Eds.), Proceedings of the 20th conference of the international group for the psychology of mathematics education, vol. 1 (pp. 3–15). Valencia: Universidad de Valencia.

Kluppel, G. T. (2012). Reflexões sobre o ensino de geometria em livros didáticos à Luz da Teoria das Representações Semióticas segundo Raymond Duval. Dissertação (Mestrado em Educação). Universidade Estadual de Ponta Grossa. Ponta Grossa.

Fujita, T., Kondo, Y., Kunimune, S., Jones, K., & Kumakura, H. (2014). The influence of 3D representations on students’ level of 3D geometrical thinking. In P. Liljedahl, S. Oesterle, C. Nicol, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (PME38 & PME-NA36) (Vol 4, pp.25-32). Vancouver, Canada: PME.

Hitt, F. (1998). Difficulties in the articulation of different representations linked to the concept of function. The Journal of Mathematical Behavior, Volume 17, Issue 1.

Lowrie, T., Logan, T., & Ramful, A. (2016). Spatial Reasoning Influences Students' Performance on Mathematics Tasks. Mathematics Education Research Group of Australasia, 407-414.

Lorenzato, S. (2006). Laboratório de Ensino de Matemática na formação de professores. Campinas: Autores Associados.

Moyer, P. S. (2001). Are we having fun yet? How teachers use manipulatives to teach mathematics. Educational Studies in Mathematics, 47(2), 175-197.

Mulligan, J., Woolcott, G., Mitchelmore, M. & Davis. (2018).Connecting mathematics learning through spatial reasoning. Math Ed Res J 30, 77–87. https://doi.org/10.1007/s13394-017-0210-x

Newcombe, N. S., Uttal, D. H. & Miller, D. I., (2013). Exploring and Enhancing Spatial Thinking: Links to Achievement in Science, Technology, Engineering, and Mathematics? Current Directions in Psychological Science, 22(5), 367–373. https://doi.org/10.1177/0963721413484756

Passos, C. L. B. (2006) Materiais manipuláveis como recursos didáticos na formação de professores de matemática. In: LORENZATO, S. (org): O laboratório de ensino de Matemática na Formação de Professores. Campinas, SP: Autores Associados, pp. 77–91.

Piaget, J. (1952). The origins of intelligence in children (Vol. 8, No. 5, pp. 18-1952). New York: International Universities Press.

Pittalis, M, Christou C. (2013). Coding and decoding representations of 3D shapes. In Psychology the Journal of Mathematical Behavior. DOI:10.1016/J.JMATHB.2013.08.004

Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 205–236). Rotterdam: Sense.

van Hiele, P. (1999) Developing Geometric Thinking Through Activities that Begin with Play. Teaching Children Mathematics. February 1999. (pp. 310-316)

Téléchargements

Publiée

2023-08-20

Comment citer

LAVICZA, Z.; ABAR, C. A. A. P.; TEJERA, M. La pensée géométrique spatiale et son articulation avec la visualisation et la manipulation d’objets en 3D. Educação Matemática Pesquisa, São Paulo, v. 25, n. 2, p. 258–277, 2023. DOI: 10.23925/1983-3156.2023v25i2p258-277. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/61968. Acesso em: 25 nov. 2024.

Numéro

Rubrique

NUMÉRO SPÉCIAL - COMMÉMORATION DES 25 ANS DE LA REVUE EDUCAÇÃO MATEMÁTICA PESQU