Une unité d'enseignement potentiellement significative médiatisée par la classe inversée pour enseigner les polyèdres

Auteurs

DOI :

https://doi.org/10.23925/1983-3156.2024v26i2p256-28009

Mots-clés :

Lycée, Polyèdres, Classe inversée, Unité d'enseignement potentiellement significative

Résumé

Les polyèdres sont un objet de connaissance en géométrie, fondamental pour les processus d’enseignement et d’apprentissage des mathématiques. Par conséquent, on s’attend à ce que les élèves, tout au long de leur scolarité, développent des compétences en visualisation spatiale, raisonnement logique et résolution de problèmes. Cette étude a été menée en tant que recherche qualitative, caractérisée comme une étude de cas. Il s’agit d’un segment d’une recherche de maîtrise visant à évaluer le potentiel de l’application d’une Unité d’Enseignement Potentiellement Significative (UEPS) sur les polyèdres dans une classe de lycée, en s’appuyant sur le travail méthodologique réalisé par la Classe Inversée. L’application a eu lieu dans une classe de seconde année de lycée au premier trimestre de 2023, avec la participation de 14 élèves du système éducatif public. Les données ont été produites à partir du design, de la mise en œuvre et de l’analyse des résultats de l’UEPS, en tenant compte de trois catégories sélectionnées pour ce travail : dimension technologique et ressources appliquées (vidéos, textes, diapositives, exercices), activités diversifiées (jeux, expérimentations de type investigatif, etc.) et connaissance des élèves sur les polyèdres. Les données collectées indiquent des avancées significatives dans l’apprentissage des élèves, mettant en avant l’engagement, l’autonomie et la compréhension des élèves sur le sujet, malgré les défis tels que l’accès limité à Internet. En conclusion, cette recherche suggère que la méthodologie active de la Classe Inversée peut être une alternative efficace pour les enseignants de l’éducation primaire afin de réduire les pratiques d’enseignement traditionnelles.

Métriques

Chargements des métriques ...

Bibliographies de l'auteur

Adriana Pereira da Silva, Universidade federal de Sergipe

Mestrado em Ensino de Ciências e Matemática

Tiago Nery Ribeiro, Universidade Federal de Sergipe

Doutorado em Educação Matemática pelo Programa de Pós-graduação em Educação Matemática da Universidade Anhanguera de São Paulo (2015), Mestrado em Educação pelo Programa de Pós-Graduação em Educação da Universidade Federal de Sergipe (2009), Especialização em Ciências da natureza e suas tecnologias(2007) e graduação em Licenciatura em Física pela Universidade Federal de Sergipe (2003). Atualmente é professor adjunto do Departamento de Física da Universidade Federal de Sergipe - cidade universitária José Aloísio de Campos; Docente permanente do Programa de Pós-graduação em Ensino de Ciências e Matemática - PPEGECIMA; Docente permanente e atualmente coordenador adjunto do Programa de Pós Graduação Profissional em Ensino de Física - PPGPF polo 11 do Mestrado Nacional Profissional em Ensino de Física - MNPEF. Pesquisador e líder do Grupo de Pesquisa em Ensino de Física - GPEF-UFS e Pesquisador do grupo Laboratório de Pesquisa em Ensino de Ciências - LAPECI. Suas áreas de interesse são Ensino de Física e Educação Matemática. Dedica-se também a teorias de Aprendizagem, especialmente a da Aprendizagem Significativa, e a formação de professores

Denize da Silva Souza, Universidade Federal de Sergipe

Doutora em Educação Matemática pela Universidade Anhanguera de São Paulo. Mestre em Educação pela Universidade Federal de Sergipe. Especialista em Arteterapia pela FIZO-ALQUIMYART e Licenciada em Matemática pela Universidade Federal de Sergipe. É professora da Universidade Federal de Sergipe no Departamento de Matemática (Campus São Cristóvão). Membro do Grupo de Estudos e Pesquisa em Educação e Contemporaneidade (EDUCON/UFS), do Grupo de Estudos e Pesquisa em Processos de Argumentação no Ensino de Matemática (GEPEM/IFS) e do Grupo de Pesquisa em Desenvolvimento Neurocognitivo da Aprendizagem Matemática. Tem experiência com formação de professores, com ênfase em Educação Matemática, atuando também com outros temas: Universo Explicativo. Relação com o Saber. Didática da Matemática. Educação Inclusiva e Currículo.

Andre Ricardo Magalhães, Universidade do Estado da Bahia

Doutor em Educação Matemática pela PUC/SP. É Bacharel em Informática pela Universidade Católica do Salvador (1997). Especialista em Educação e Novas Tecnologias da Informação e da Comunicação pela Universidade do Estado da Bahia (1999), Mestre em Engenharia de Produção pela Universidade Federal de Santa Catarina (2002). Atualmente é Coordenador do Programa de Mestrado em Gestão e Tecnologias aplicadas a Educação na Universidade do Estado da Bahia. Foi eleito em 2009 como Presidente do Fórum da Área de Informática da CAPES- UAB. Atua como avaliador de cursos de graduação do INEP. Faz parte da base de consultores do INEP para elaboração de itens do ENEM na área de Matemática. Tem experiência na área de novas tecnologias e o processo de aprendizagem, dedicando-se principalmente a estudar sobre as Tecnologias da informação e da Comunicação e seus impactos nos processos educacionais. Autor de diversos artigos na área, têm tido publicações tanto nacionais quanto Internacionais. Atua também nos seguintes temas: Modelagem Cognitiva, Redes Sociais e Educação, Educação matemática, WEB 2.0, Interação Homem-Computador, Hipermídia Adaptativa e Gestão do Conhecimento.

Références

Ausubel, P. D. (2003). Aquisição e retenção de conhecimento: Uma perspectiva cognitiva. Lisboa: Plátano.

Bergmann, J., & Sams, A. (20121). Sala de aula invertida – uma metodologia ativa de aprendizagem. Rio de Janeiro: LTC.

Brasil. (1998). Parâmetros Curriculares Nacionais: Matemática. Brasília: Ministério da Educação, Secretaria de Educação Fundamental.

Brasil. (2000). Parâmetros Curriculares Nacionais para o Ensino Médio. Brasília: Secretaria da Educação Média e Tecnológica.

Brasil. (2018). Base Nacional Comum Curricular. Brasília: Ministério da Educação, Ministério de Estado da Educação, Secretaria Executiva, Secretaria de Educação Básica.

Cunha, C. R., Amorim, A. A. Souza, A. C. R & Silva, R. J. (2019). Construção de uma unidade de ensino potencialmente significativa: uma proposta de ensino de geometria espacial em sala de aula invertida. Profiscientia, 13, 123-137. https://www.researchgate.net/publication/338015551.

Gazire, E. S. (2000). O não resgate das geometrias (Tese de doutorado). Programa de Pós-Graduação em Educação, Universidade Estadual de Campinas, Campinas, Brasil.

Kaleff, A. M. (1994). Tomando o ensino de geometria em nossas mãos... Revista da Sociedade Brasileira de Educação Matemática, 1(2), 19-25.

Magalhães, A. R., Baqueiro, G. D. S., Leal, M. F., & Ferreira, M. (2012). Formação continuada em geometria: uma análise do projeto ENGEO. In IV Congresso Uruguaio de Educação Matemática - CUREM (pp. 132-134). Montevidéu. http://funes.uniandes.edu.co/17671/1/Magalhaes2012Forma%C3%A7ao.pdf

Minayo, M. C. S. (1994). Pesquisa social: teoria, método e criatividade. Petrópolis: Vozes.

Moreira, M. A. (2011). Aprendizagem significativa: A teoria e textos complementares. São Paulo: Editora Livraria da Física.

Moreira, M. A. (2011a). Unidades de enseñanza potencialmente significativas – UEPS. Aprendizagem Significativa em Revista, 2(1), 43-63. http://www.if.ufrgs.br/asr/artigos/Artigo_ID10/v1_n2_a2011.pdf.

Novak, J. (2000). Aprender, criar e utilizar o conhecimento. Lisboa: Plátano Edições Técnicas.

Pavanello, R. M. (2009). O abandono do ensino da geometria no Brasil: causas e consequências. Zetetike, 1(1). DOI: 10.20396/zet.v1i1.8646822. https://periodicos.sbu.unicamp.br/ojs/index.php/zetetike/article/view/8646822

Ribeiro, T. N. (2015). O ensino de razões trigonométricas no triângulo retângulo a partir de situações aplicadas à Física: Um estudo baseado nas unidades de ensino potencialmente significativas (UEPS) (Tese de doutorado, Universidade Anhanguera de São Paulo). https://repositorio.pgsscogna.com.br/bitstream/123456789/3501/1/Tiago%20Nery%20Ribeiro.pdf

Rosa, M. C., Souza, D. S., & Santos, N. M. (2020). Formação continuada de professores de matemática e o ensino de geometria: um panorama das pesquisas dos últimos anos. Educação Matemática Pesquisa. Recuperado de https://revistas.pucsp.br/index.php/emp/article/view/47603

Sanches, R. M. L., Batista, S.C. F.& Marcelino, V. S. (2019). Sala de aula invertida em aulas de matemática financeira básica no ensino médio: reflexões sobre atividades e recursos didáticos digitais. Revista Novas Tecnologias na Educação, 17(1), 476–485. DOI: 10.22456/1679-1916.95858. Recuperado de https://seer.ufrgs.br/index.php/renote/article/view/95858

Santos, I. S. d., & Soares, M. F. M. (Org). (2022). Currículo de Sergipe: integrar e construir: ensino médio [Livro eletrônico]. Aracaju, SE: Secretaria de Estado da Educação, do Esporte e da Cultura.

Schreiber, K. P., Pereira, E. C., Machado, C. C., & Porciúncula, M. (2018). Sala de aula invertida no ensino de matemática: mapeamento de pesquisas científicas na área de ensino. Educação Matemática Pesquisa, 20(2), 222-235. https://doi.org/10.23925/1983-3156.2018v20i2p222-235

Silva, A. P, Ribeiro, T. N, & Silva, V. A (2023). Unidade de ensino potencialmente significativa em um ambiente de sala de aula invertida: uma revisão sistemática de literatura. Revista Eletrônica de Educação Matemática, 18, 1-18. https://doi.org/10.5007/1981-1322.2023.e91298

Silva, A. P. (2023). Contribuições de uma unidade de ensino potencialmente significativa para ensinar poliedros utilizando a sala de aula invertida (Dissertação de mestrado em Ensino de Ciências e Matemática). Universidade Federal de Sergipe, São Cristóvão. https://ri.ufs.br/jspui/handle/riufs/18889

Souza, D. S. (2021). Problemática do ensino de geometria: desafios, possibilidades e experiências. Caminhos da Educação Matemática em Revista, 11(3), 242-263. https://periodicos.ifs.edu.br/periodicos/caminhos_da_educacao_matematica/article/view/906

Tripp, D. (2005). Pesquisa-ação: uma introdução metodológica. Educação e Pesquisa, 31(3), 443-466. https://doi.org/10.1590/S1517-97022005000300009

Valente, J. A. (2018). A sala de aula invertida e a possibilidade do ensino personalizado: Uma experiência com a graduação em midialogia. In L. Bacich & J. Moran (Orgs.), Metodologias ativas para uma educação inovadora (pp. 26-44). Porto Alegre: Penso.

Yin, R. K. (2003). Estudo de caso – Planejamento e métodos (2ª ed.). Porto Alegre: Bookman.

Publiée

2024-09-01

Comment citer

PEREIRA DA SILVA, A.; NERY RIBEIRO, T. .; DA SILVA SOUZA, D.; RICARDO MAGALHÃES, A. Une unité d’enseignement potentiellement significative médiatisée par la classe inversée pour enseigner les polyèdres. Educação Matemática Pesquisa, São Paulo, v. 26, n. 2, p. 256–280, 2024. DOI: 10.23925/1983-3156.2024v26i2p256-28009. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/66257. Acesso em: 22 nov. 2024.