Algebra in the Mathematics Curriculum of the Early Years of Elementary School
The Teachers’ Voice
DOI:
https://doi.org/10.23925/1983-3156.2022v24i1p250-288Keywords:
Early Years, Algebra, Algebraic Thinking, Knowledge to Teach AlgebraAbstract
This article presents the results of a study that sought to investigate the knowledge of teachers of the early years of elementary school about algebra and its teaching. Algebra is one of the five thematic units of mathematics for the early years of elementary school, proposed in the National Common Core Curriculum (2017), whose purpose is to develop students’ algebraic thinking. Questionnaires answered by 98 teachers were used to form a database, whose content was furthered through interviews. The methodology used for data analysis was Grounded Theory – a theory grounded on data. The results indicated the absence of specific training for teaching the thematic unit concerning algebra, reported by 74.5% of teachers. That condition makes them feel unprepared in their knowledge to develop algebraic activities. After the initial diagnosis, reflective/formative interviews were conducted with three pairs of teachers. The dimensions of algebra as proposed by the National Common Core Curriculum (BNCC) for the early years of elementary school were emphasized, such as the generalization of patterns in sequences and the sense of equivalence of equality. Initially, the teachers did not demonstrate clarity regarding content and curriculum knowledge, in aspects such as the relationship between work with sequences and generalization, the importance of working with the sense of equivalence of equality, and the use of relational thinking. During the reflective/formative interviews, the teachers emphasized the importance of knowledge and the need for training on themes that contribute to the development of algebraic thinking to implement the teaching of algebra, highlighting the viability of that teaching.
Metrics
References
Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, v.59, n.5, p.389-407. https://doi.org/10.1177%2F0022487108324554
Blanton, M. L., & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, v. 36, n. 5, p. 412-446. https://doi.org/10.2307/30034944
Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J.-S. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, v. 46, n. 1, p. 39-87. https://doi.org/10.5951/jresematheduc.46.1.0039
Brasil. (2017). Ministério da Educação. Base Nacional Comum Curricular. Brasília: MEC/CNE. http://basenacionalcomum.mec.gov.br/
Canavarro, A. P. (2007). O pensamento algébrico na aprendizagem da Matemática nos primeiros anos. Quadrante, v. XVI, n. 2, p. 81-118. https://doi.org/10.48489/quadrante.22816
Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, v. 37, n. 2, p. 87-115.
Charmaz, K. (2009). A construção da teoria fundamentada. Porto Alegre: ArtMed.
Cyrino, M. C. C. T., & Oliveira, H. M. de. (2011). Pensamento algébrico ao longo do Ensino Básico em Portugal. Bolema, v. 24, n. 38, p. 97-126. https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/4598
Dante, L. R. (2017). Ápis Matemática 5º ano: ensino fundamental, anos iniciais. 3. ed. São Paulo: Ática.
Ferreira, M. C. N., Ribeiro, M., & Ribeiro, A. J. (2017). Conhecimento matemático para ensinar Álgebra nos Anos Iniciais do Ensino Fundamental. Zetetiké, v. 25, n. 3, p. 496-514. http://dx.doi.org/10.20396/zet.v25i3.8648585
Ferreira, M. C. N., Ribeiro, M., & Ribeiro, A. J. (2018). Álgebra nos Anos Iniciais do Ensino Fundamental: investigando a compreensão de professores acerca do Pensamento Algébrico. Perspectivas da Educação Matemática – INMA/UFMS, v. 11, n. 25, p. 53-73. https://periodicos.ufms.br/index.php/pedmat/article/view/3275/4612
Freire, R. S. (2011). Desenvolvimento de conceitos algébricos por professores dos anos iniciais do Ensino Fundamental. [Tese de Doutorado em Educação Brasileira, Universidade do Ceará]. http://www.repositorio.ufc.br/bitstream/riufc/3304/1/2011_tese_rsfreire.pdf
Jungbluth, A. (2020). Álgebra no currículo de matemática dos anos iniciais: e agora? [Dissertação de Mestrado em Educação Científica e Tecnológica, Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/handle/123456789/216632
Jungbluth, A.; Silveira, E.; Grando, R. C. (2019). O estudo de sequências na Educação Algébrica nos Anos Iniciais do Ensino Fundamental. Educação Matemática Pesquisa, v.21, n.3, p. 96-118. https://doi.org/10.23925/1983-3156.2019vol21i3p96-118
Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, v. 8, n. 1, p. 139-151.
Kieran, C., Pang, J., Schifter, D. & Ng, S. F. (2016). Early Algebra. Research into its nature, its learning, its teaching. Hamburg: Springer Open.
Litoldo, B. F., Almeida, M. V. R. de, & Ribeiro, M. (2018). Conhecimento especializado do professor que ensina matemática: uma análise do livro didático no âmbito das frações. Tangram, Revista de Educação Matemática, Dourados, v. 1, n. 3, p. 3-23. https://ojs.ufgd.edu.br/index.php/tangram/article/view/7370/4473
Magina, S., Oliveira, C. F. dos S. & Merlini, V. (2018). O Raciocínio Algébrico no Ensino Fundamental: O debate a partir da visão de quatro estudos. Em teia – Revista de Educação Matemática e Tecnológica Iberoamericana, vol. 9, n.1, p.1-23. https://periodicos.ufpe.br/revistas/emteia/article/view/235070
Mason, J. (1996). Expressing generality and roots of algebra. In: N. Bednarz, C. Kieran & L. Lee (Eds.). Approaches of algebra: perspectives for research and teaching. Dordrecht: Kluwer Academic Publishers, p. 65-86.
Mason, J. (2018). How early is too early for thinking algebraically? In C. Kieran (Ed.). Teaching and learning algebraic thinking with 5-to 12 year-olds. Hamburg: Springer International Publishing, p. 329-350. https://doi.org/10.1007/978-3-319-68351-5_14
Ponte, J. P. da., Branco, N., & Matos, A. (2009). Álgebra no Ensino Básico. Lisboa: ME - DGIDC.
Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. In S. Alatorre, J. L.Cortina, M. Sáiz, & A. Méndez, (Eds.). Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education. Mérida, Mexico: Universidad Pedagógica Nacional, v. 1, (p. 2-21). http://www.pmena.org/pmenaproceedings/PMENA%2028%202006%20Proceedings.pdf
Radford, L. (2010). The eye as a theoretician: seeing structures in generalizing activities. For the Learning of Mathematics, 30 (2), p. 2-7. https://www.jstor.org/stable/20749442
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, Washington, v. 15, n. 2, p. 4-14.
Shulman, L. S. (1987). Knowledge and teaching foundations of the New Reform. Harvard Educational Review, v. 57, n. 1, p. 1-22. Tradução de Leda Back. Conhecimento e ensino: fundamentos para a nova reforma. Cadernos Cenpec, v. 4, n. 2, p. 196-229, 2014. http://cadernos.cenpec.org.br/cadernos/index.php/cadernos/article/view/293/297
Silvestre, A. I., Faria, A., Souza, H., Cristo, I., Santos, I., Molarinho, M. J., & Veladas, M. (2010). Estratégias de generalização dos alunos do 2o, 3o e 5o anos. In GTI (Org.). O professor e o programa do Ensino Básico. Lisboa: APM (p. 89-119).
Stacey, K. (1989). Finding and using patterns in linear generalizing problems. Educational Studies in Mathematics, Netherlands, n. 20, p. 47-164.
Tardif, M. (2002). Saberes docentes e formação profissional. Petrópolis: Vozes.
Tarozzi, M. (2011). O que é grounded theory? Metodologia de pesquisa e de teoria fundamentada nos dados. Rio de Janeiro: Vozes.
Trivilin, L. R., & Ribeiro, A. (2015). Conhecimento matemático para o ensino de diferentes significados do sinal de igualdade: um estudo desenvolvido com professores dos Anos Iniciais do Ensino Fundamental. Bolema, v.29, n.51, p.38-59. http://dx.doi.org/10.1590/1980-4415v29n51a03
Vale, I., Barbosa, Pimentel, T., A., Barbosa, E., Fonseca, L., Borralho, A., & Cabrita, I. (2011). Padrões em Matemática: uma proposta didática no âmbito do novo programa para o ensino básico. Lisboa: Texto.
Vale, I.; Pimentel, T. (2013). O pensamento algébrico e a descoberta de padrões na formação de professores. Da Investigação às Práticas, v. 3, n. 2, p. 98-124. http://hdl.handle.net/10400.21/3098
Van de Walle, J. A. (2009). A Matemática no ensino fundamental: formação de professores e aplicação em sala de aula. Trad. de Paulo Henrique Colonese. Porto Alegre: Artmed.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Educação Matemática Pesquisa : Revista do Programa de Estudos Pós-Graduados em Educação Matemática
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).