Promoviendo el conocimiento especializado de futuros profesores de matemáticas sobre el algoritmo de la división euclidiana
DOI:
https://doi.org/10.23925/1983-3156.2023v25i3p373-402Palabras clave:
Conocimiento especializado, Teorema del algoritmo de la división euclidiana, Teoría de números, Formación del profesorado de matemáticas, Conocimientos especializados de los profesores de matemáticasResumen
En este artículo reportamos la experiencia de un formador de profesores, quien es matemático, al enseñar el Teorema del Algoritmo de la División Euclidiana en un curso de Teoría de Números para futuros profesores de Matemáticas. Considerando que el conocimiento del profesor que enseña Matemáticas es especializado, desde el punto de vista del modelo Mathematics Teachers’ Specialised Knowledge, se pretende identificar qué conocimientos moviliza el formador y cuáles conocimientos evidencian los futuros profesores cuando el formador presenta este resultado algebraico. Algunas actividades fueron conducidas por el formador, en un intento de comprender cómo los estudiantes realizaban la división de números enteros antes, durante y después de conocer el teorema; nuestro análisis se centra en estos diferentes momentos. En cuanto al conocimiento de los futuros profesores, fue posible observar principalmente conocimientos relacionados con los procedimientos que involucran el algoritmo. Sin embargo, a lo largo de las actividades realizadas, pudieron establecer diferentes conexiones involucrando el algoritmo de la división euclidiana. Sobre el formador, destacamos que sus conocimientos matemáticos y pedagógicos, combinados con el objetivo de formar efectivamente a los futuros profesores de Matemática, tienen el potencial de promover, en los estudiantes, un conocimiento especializado de la materia.
Métricas
Citas
Almeida, M. V. R. (2020). Conhecimento especializado sobre divisibilidade do formador de professores que ensina Teoria dos Números para estudantes de Licenciatura em Matemática [Tese de doutorado em Ensino de Ciências e Matemática]. Universidade Estadual de Campinas. https://hdl.handle.net/20.500.12733/1640658
Almeida, M. V. R, Ribeiro, M., & Fiorentini, D. (2021). Mathematical specialized knowledge of a mathematics teacher educator for teaching divisibility. PNA, 15(3), 187–210. https://doi.org/10.30827/pna.v15i3.15778
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554
Bair, S. L., & Rich, B. S. (2011). Characterizing the Development of Specialized Mathematical Content Knowledge for Teaching in Algebraic Reasoning and Number Theory. Mathematical Thinking and Learning, 13(4), 292–321. https://doi.org/10.1080/10986065.2011.608345
Beswick, K., & Goos, M. (2018). Mathematics teacher educator knowledge: What do we know and where to from here? Journal of Mathematics Teacher Education, 21(5), 417–427. https://doi.org/10.1007/s10857-018-9416-4
Brown, A., Thomas, K., & Tolias, G. (2002). Conceptions of divisibility: Success and understanding. In S. R. Campbell & R. Zazkis (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 41–82). Westport, CT: Ablex Publishing.
Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., … Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. https://doi.org/10.1080/14794802.2018.1479981
Carrillo, J., Montes, M., Codes, M., Contreras, R. C., & Climent, N. (2019). El conocimiento didáctico del contenido del formador de profesores de matemáticas: su construcción a partir del análisis del conocimiento especializado pretendido en el futuro profesor. In F. Imbernón, A. Shigunov Neto, I. Fortunato (Eds.), Formação permanente de professores: experiências ibero-americanas (pp. 324-341). São Paulo: Edições Hipótese.
Contreras, L. C., Montes, M., Muñoz-Catalán, M. C., & Joglar, N. (2017). Fundamentos teóricos para conformar un modelo de conocimiento especializado del formador de profesores de matemáticas. In J. Carrillo & L.C. Contreras (Eds.), Avances, utilidades y retos del modelo MTSK. Actas de las III Jornadas del Seminario de Investigación de Didáctica de la Matemática de la Universidad de Huelva (pp. 11¬–25). Huelva: CGSE.
Coura, F. C. F., & Passos, C. L. B. (2017). Estado do conhecimento sobre o formador de professores de Matemática no Brasil. Zetetiké, 25(1), 7–26. https://doi.org/10.20396/zet.v25i1.8647556
Delgado-Rebolledo, R., & Zakaryan, D. (2019). Relationships Between the Knowledge of Practices in Mathematics and the Pedagogical Content Knowledge of a Mathematics Lecturer. International Journal of Science and Mathematics Education, 18(1), 567–587. https://doi.org/10.1007/s10763-019-09977-0
Escudero-Ávila, D., Montes, M., & Contreras, L. C. (2021). What do Mathematics Teacher Educators need to know? Reflections emerging from the content of mathematics teacher education. In M. Goos, & K. Beswick (Eds.), The learning and development of mathematics teacher educators: international perspectives and challenges (pp. 23-40). Springer International. https://doi.org/10.1007/978-3-030-62408-8
Gil, A. C. (2002). Como elaborar projetos de pesquisa. São Paulo: Atlas.
Jaworski, B. (2008). Development of the mathematics teacher educator and its relation to teaching development. In B. Jaworski, & T. Wood (Eds.), The international handbook of mathematics teacher education (Vol. 4, pp. 335–361). Rotterdam: Sense Publishers.
Leikin, R., Zazkis, R., & Meller, M. (2018). Research mathematicians as teacher educators: focusing on mathematics for secondary mathematics teachers. Journal of Mathematics Teacher Education, 21(5), p. 451-473. https://doi.org/10.1007/s10857-017-9388-9
Ministério da Educação. (2018). Base Nacional Comum Curricular. Brasília: Ministério da Educação.
Montes, M., Ribeiro, C., Carrillo, C., & Kilpatrick, J. (2016). Understanding mathematics from a higher standpoint as a teacher: an unpacked example. In Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 315–322). Szeged, Hungary.
Oliveira, G. P., & Fonseca, R. V. (2017). A teoria dos números na formação de professores de matemática: (In)compreensões acerca da primalidade e do teorema fundamental da Aritmética. Ciência & Educação, 23(4), 881–898. https://doi.org/10.1590/1516-731320170040015
Resende, M. R. (2007). Re-Significando a disciplina Teoria dos Números na formação do professor de Matemática na licenciatura [Tese de doutorado em Educação Matemática]. Pontifícia Universidade Católica de São Paulo. https://repositorio.pucsp.br/jspui/handle/handle/11207
Resende, M. R., & Machado, S. D. A. (2012). O ensino de matemática na licenciatura: a disciplina Teoria Elementar dos Números. Educação Matemática Pesquisa, 14(2), 257–278. https://revistas.pucsp.br/index.php/emp/article/view/9077
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
Sinclair, N., Zazkis, R., & Liljedahl, P. (2003). Number Worlds: Visual and Experimental Access to Elementary Number Theory Concepts. International Journal of Computers for Mathematical Learning, 8, 235–263. https://doi.org/10.1023/B:IJCO.0000021780.01416.61
Smith, J. C. (2002). Connecting undergraduate Number Theory to High School Algebra: A study of a course for prospective teachers. Proceedings of the 2nd International Conference on the Teaching of Mathematics, Crete, Greece.
Zazkis, R., & Campbell, S. R. (1996a). Divisibility and Multiplicative Structure of Natural Numbers: Preservice Teachers' Understanding. Journal for Research in Mathematics Education, 27(5), 540–563. https://doi.org/10.2307/749847
Zazkis, R., & Campbell, S. R. (1996b). Prime decomposition: understanding uniqueness. Journal of Mathematical Behavior, 15(2), 207–218.
Zazkis, R., & Leikin, R. (2010). Advanced Mathematical Knowledge in Teaching Practice: Perceptions of Secondary Mathematics Teachers. Mathematical Thinking and Learning, 12(4), 263–281. https://doi.org/10.1080/10986061003786349
Zazkis, R., & Liljedahl, P. (2004). Understanding primes: the role of representation. Journal for Research in Mathematics Education, 35(3), 164–186. https://doi.org/10.2307/30034911
Zazkis, R., Sinclair, N., & Liljedahl, P. (2013). Lesson Play in Mathematics Education. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3549-5
Zopf, D. (2010). Mathematical knowledge for teaching teachers: The mathematical work of and knowledge entailed by teacher education. [Tese de Doutorado]. University of Michigan. http://deepblue.lib.umich.edu/bitstream/2027.42/77702/1/dzopf_1.pdf
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).