Promouvoir les connaissances spécialisées des futurs enseignants de mathématiques sur l'algorithme de division euclidienne

Auteurs

DOI :

https://doi.org/10.23925/1983-3156.2023v25i3p373-402

Mots-clés :

Connaissances spécialisées, Théorème de l'algorithme de division euclidienne, Théorie des nombres, Formation de professeur de mathématiques, Connaissances spécialisées des enseignants de mathématiques

Résumé

Dans cet article, nous rapportons l'expérience d'un formateur d'enseignants, qui est mathématicien, lors de l'enseignement du Théorème de l'Algorithme de la Division Euclidienne dans un cours de Théorie des Nombres destiné aux futurs professeurs de mathématiques. En considérant que la connaissance du professeur enseignant les mathématiques est spécialisée, du point de vue du modèle Mathematics Teachers’ Specialised Knowledge, nous cherchons à identifier quelles connaissances sont mobilisées par le formateur et quelles connaissances sont mises en évidence par les étudiants en licence lorsque le formateur aborde ce résultat algébrique. Plusieurs activités ont été menées par l'enseignant afin de comprendre comment les étudiants en licence effectuaient la division des nombres entiers avant, pendant et après avoir pris connaissance du théorème ; notre analyse se concentre sur ces différents moments. En ce qui concerne la connaissance des étudiants en licence, on a pu observer principalement des connaissances liées aux procédures impliquant l'algorithme. Néanmoins, tout au long des activités réalisées, ils ont été capables d'établir différentes connexions impliquant l'algorithme de la division euclidienne. En ce qui concerne le formateur, nous soulignons que sa connaissance mathématique et pédagogique, associée à l'objectif de former efficacement les futurs professeurs de mathématiques, a le potentiel de promouvoir chez les étudiants en licence une connaissance spécialisée sur le sujet.

Métriques

Chargements des métriques ...

Bibliographies de l'auteur

Marieli Vanessa Rediske de Almeida, Universidade Estadual do Oeste do Paraná

Doutora em Ensino de Ciências e Matemática

Rian Lopes, Universidade Estadual do Oeste do Paraná

Doutor em Matemática

Références

Almeida, M. V. R. (2020). Conhecimento especializado sobre divisibilidade do formador de professores que ensina Teoria dos Números para estudantes de Licenciatura em Matemática [Tese de doutorado em Ensino de Ciências e Matemática]. Universidade Estadual de Campinas. https://hdl.handle.net/20.500.12733/1640658

Almeida, M. V. R, Ribeiro, M., & Fiorentini, D. (2021). Mathematical specialized knowledge of a mathematics teacher educator for teaching divisibility. PNA, 15(3), 187–210. https://doi.org/10.30827/pna.v15i3.15778

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554

Bair, S. L., & Rich, B. S. (2011). Characterizing the Development of Specialized Mathematical Content Knowledge for Teaching in Algebraic Reasoning and Number Theory. Mathematical Thinking and Learning, 13(4), 292–321. https://doi.org/10.1080/10986065.2011.608345

Beswick, K., & Goos, M. (2018). Mathematics teacher educator knowledge: What do we know and where to from here? Journal of Mathematics Teacher Education, 21(5), 417–427. https://doi.org/10.1007/s10857-018-9416-4

Brown, A., Thomas, K., & Tolias, G. (2002). Conceptions of divisibility: Success and understanding. In S. R. Campbell & R. Zazkis (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 41–82). Westport, CT: Ablex Publishing.

Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., … Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. https://doi.org/10.1080/14794802.2018.1479981

Carrillo, J., Montes, M., Codes, M., Contreras, R. C., & Climent, N. (2019). El conocimiento didáctico del contenido del formador de profesores de matemáticas: su construcción a partir del análisis del conocimiento especializado pretendido en el futuro profesor. In F. Imbernón, A. Shigunov Neto, I. Fortunato (Eds.), Formação permanente de professores: experiências ibero-americanas (pp. 324-341). São Paulo: Edições Hipótese.

Contreras, L. C., Montes, M., Muñoz-Catalán, M. C., & Joglar, N. (2017). Fundamentos teóricos para conformar un modelo de conocimiento especializado del formador de profesores de matemáticas. In J. Carrillo & L.C. Contreras (Eds.), Avances, utilidades y retos del modelo MTSK. Actas de las III Jornadas del Seminario de Investigación de Didáctica de la Matemática de la Universidad de Huelva (pp. 11¬–25). Huelva: CGSE.

Coura, F. C. F., & Passos, C. L. B. (2017). Estado do conhecimento sobre o formador de professores de Matemática no Brasil. Zetetiké, 25(1), 7–26. https://doi.org/10.20396/zet.v25i1.8647556

Delgado-Rebolledo, R., & Zakaryan, D. (2019). Relationships Between the Knowledge of Practices in Mathematics and the Pedagogical Content Knowledge of a Mathematics Lecturer. International Journal of Science and Mathematics Education, 18(1), 567–587. https://doi.org/10.1007/s10763-019-09977-0

Escudero-Ávila, D., Montes, M., & Contreras, L. C. (2021). What do Mathematics Teacher Educators need to know? Reflections emerging from the content of mathematics teacher education. In M. Goos, & K. Beswick (Eds.), The learning and development of mathematics teacher educators: international perspectives and challenges (pp. 23-40). Springer International. https://doi.org/10.1007/978-3-030-62408-8

Gil, A. C. (2002). Como elaborar projetos de pesquisa. São Paulo: Atlas.

Jaworski, B. (2008). Development of the mathematics teacher educator and its relation to teaching development. In B. Jaworski, & T. Wood (Eds.), The international handbook of mathematics teacher education (Vol. 4, pp. 335–361). Rotterdam: Sense Publishers.

Leikin, R., Zazkis, R., & Meller, M. (2018). Research mathematicians as teacher educators: focusing on mathematics for secondary mathematics teachers. Journal of Mathematics Teacher Education, 21(5), p. 451-473. https://doi.org/10.1007/s10857-017-9388-9

Ministério da Educação. (2018). Base Nacional Comum Curricular. Brasília: Ministério da Educação.

Montes, M., Ribeiro, C., Carrillo, C., & Kilpatrick, J. (2016). Understanding mathematics from a higher standpoint as a teacher: an unpacked example. In Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 315–322). Szeged, Hungary.

Oliveira, G. P., & Fonseca, R. V. (2017). A teoria dos números na formação de professores de matemática: (In)compreensões acerca da primalidade e do teorema fundamental da Aritmética. Ciência & Educação, 23(4), 881–898. https://doi.org/10.1590/1516-731320170040015

Resende, M. R. (2007). Re-Significando a disciplina Teoria dos Números na formação do professor de Matemática na licenciatura [Tese de doutorado em Educação Matemática]. Pontifícia Universidade Católica de São Paulo. https://repositorio.pucsp.br/jspui/handle/handle/11207

Resende, M. R., & Machado, S. D. A. (2012). O ensino de matemática na licenciatura: a disciplina Teoria Elementar dos Números. Educação Matemática Pesquisa, 14(2), 257–278. https://revistas.pucsp.br/index.php/emp/article/view/9077

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22. https://doi.org/10.17763/haer.57.1.j463w79r56455411

Sinclair, N., Zazkis, R., & Liljedahl, P. (2003). Number Worlds: Visual and Experimental Access to Elementary Number Theory Concepts. International Journal of Computers for Mathematical Learning, 8, 235–263. https://doi.org/10.1023/B:IJCO.0000021780.01416.61

Smith, J. C. (2002). Connecting undergraduate Number Theory to High School Algebra: A study of a course for prospective teachers. Proceedings of the 2nd International Conference on the Teaching of Mathematics, Crete, Greece.

Zazkis, R., & Campbell, S. R. (1996a). Divisibility and Multiplicative Structure of Natural Numbers: Preservice Teachers' Understanding. Journal for Research in Mathematics Education, 27(5), 540–563. https://doi.org/10.2307/749847

Zazkis, R., & Campbell, S. R. (1996b). Prime decomposition: understanding uniqueness. Journal of Mathematical Behavior, 15(2), 207–218.

Zazkis, R., & Leikin, R. (2010). Advanced Mathematical Knowledge in Teaching Practice: Perceptions of Secondary Mathematics Teachers. Mathematical Thinking and Learning, 12(4), 263–281. https://doi.org/10.1080/10986061003786349

Zazkis, R., & Liljedahl, P. (2004). Understanding primes: the role of representation. Journal for Research in Mathematics Education, 35(3), 164–186. https://doi.org/10.2307/30034911

Zazkis, R., Sinclair, N., & Liljedahl, P. (2013). Lesson Play in Mathematics Education. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3549-5

Zopf, D. (2010). Mathematical knowledge for teaching teachers: The mathematical work of and knowledge entailed by teacher education. [Tese de Doutorado]. University of Michigan. http://deepblue.lib.umich.edu/bitstream/2027.42/77702/1/dzopf_1.pdf

Publiée

2023-10-03

Comment citer

ALMEIDA, M. V. R. de; LOPES, R. Promouvoir les connaissances spécialisées des futurs enseignants de mathématiques sur l’algorithme de division euclidienne. Educação Matemática Pesquisa, São Paulo, v. 25, n. 3, p. 373–402, 2023. DOI: 10.23925/1983-3156.2023v25i3p373-402. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/62210. Acesso em: 22 déc. 2024.